960 research outputs found

    Effects of a brief multimodal online intervention on the intention to conduct sun protective behaviours through targeting illness representations about skin cancer

    Get PDF
    __Objective:__ The incidence of skin cancer can be reduced by increasing sun protective behaviours. Based on the Common-Sense Model and the Intervention Mapping approach, a brief intervention targeting illness representations about skin cancer to increase the intention to conduct sun protective behaviours was developed and evaluated regarding its effectiveness. __Design:__ A randomized pre-post control group design with 509 healthy participants (69% women, mean age 39 years). Main outcome measures: Changes in illness representations about skin cancer (emotional representations, illness coherence, and prevention control) and the intention to conduct sun protective behaviours, i.e. UV protection and sun avoidance. __Results:__ ANCOVAs showed that the intervention increased illness coherence and perceived prevention control as well as the intention to conduct sun protective behaviours. Mediation analyses revealed that the increase in illness coherence and/or perceived prevention control partially mediated the effect of the intervention on the increase of the intention to use UV protection and to avoid sun exposure. __Conclusion:__ The intervention was successful in changing illness representations and thereby increasing the intention to conduct sun protective behaviours. The findings provide evidence for the usefulness of the Common-Sense Model in the context of illness prevention

    High-level feature detection from video in TRECVid: a 5-year retrospective of achievements

    Get PDF
    Successful and effective content-based access to digital video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against others using low-level characteristics like colour, texture, or shapes, or on determining and matching objects appearing within the video. Possibly the most important technique, however, is one which determines the presence or absence of a high-level or semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands of such semantic features we can support many kinds of content-based video navigation. Critically however, this depends on being able to determine whether each feature is or is not present in a video clip. The last 5 years have seen much progress in the development of techniques to determine the presence of semantic features within video. This progress can be tracked in the annual TRECVid benchmarking activity where dozens of research groups measure the effectiveness of their techniques on common data and using an open, metrics-based approach. In this chapter we summarise the work done on the TRECVid high-level feature task, showing the progress made year-on-year. This provides a fairly comprehensive statement on where the state-of-the-art is regarding this important task, not just for one research group or for one approach, but across the spectrum. We then use this past and on-going work as a basis for highlighting the trends that are emerging in this area, and the questions which remain to be addressed before we can achieve large-scale, fast and reliable high-level feature detection on video

    Automated analysis of short responses in an interactive synthetic tutoring system for introductory physics

    Get PDF
    Citation: Nakamura, C. M., Murphy, S. K., Christel, M. G., Stevens, S. M., & Zollman, D. A. (2016). Automated analysis of short responses in an interactive synthetic tutoring system for introductory physics. Physical Review Physics Education Research, 12(1), 16. doi:10.1103/PhysRevPhysEducRes.12.010122Computer-automated assessment of students' text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part of a project to develop and test an interactive learning environment designed to help students learn introductory physics concepts. The system is designed around an interactive video tutoring interface. We have analyzed 9 with about 150 responses or less. We observe for 4 of the 9 automated assessment with interrater agreement of 70% or better with the human rater. This level of agreement may represent a baseline for practical utility in instruction and indicates that the method warrants further investigation for use in this type of application. Our results also suggest strategies that may be useful for writing activities and questions that are more appropriate for automated assessment. These strategies include building activities that have relatively few conceptually distinct ways of perceiving the physical behavior of relatively few physical objects. Further success in this direction may allow us to promote interactivity and better provide feedback in online learning systems. These capabilities could enable our system to function more like a real tutor

    Spectral Analysis of Protein-Protein Interactions in Drosophila melanogaster

    Full text link
    Within a case study on the protein-protein interaction network (PIN) of Drosophila melanogaster we investigate the relation between the network's spectral properties and its structural features such as the prevalence of specific subgraphs or duplicate nodes as a result of its evolutionary history. The discrete part of the spectral density shows fingerprints of the PIN's topological features including a preference for loop structures. Duplicate nodes are another prominent feature of PINs and we discuss their representation in the PIN's spectrum as well as their biological implications.Comment: 9 pages RevTeX including 8 figure

    Climate-induced changes in river flow regimes will alter future bird distributions

    Get PDF
    Anthropogenic forcing of the climate is causing an intensification of the global water cycle, leading to an increase in the frequency and magnitude of floods and droughts. River flow shapes the ecology of riverine ecosystems and climate-driven changes in river flows are predicted to have severe consequences for riverine species, across all levels of trophic organization. However, understanding species' responses to variation in flow is limited through a lack of quantitative modelling of hydroecological interactions. Here, we construct a Bioclimatic Envelope Model (BEM) ensemble based on a suite of plausible future flow scenarios to show how predicted alterations in flow regimes may alter the distribution of a predatory riverine species, the White-throated Dipper (Cinclus cinclus). Models predicted a gradual diminution of dipper probability of occurrence between present day and 2098. This decline was most rapid in western areas of Great Britain and was principally driven by a projected decrease in flow magnitude and variability around low flows. Climate-induced changes in river flow may, therefore, represent a previously unidentified mechanism by which climate change may mediate range shifts in birds and other riverine biota

    Co-Evolution of quasispecies: B-cell mutation rates maximize viral error catastrophes

    Full text link
    Co-evolution of two coupled quasispecies is studied, motivated by the competition between viral evolution and adapting immune response. In this co-adaptive model, besides the classical error catastrophe for high virus mutation rates, a second ``adaptation-'' catastrophe occurs, when virus mutation rates are too small to escape immune attack. Maximizing both regimes of viral error catastrophes is a possible strategy for an optimal immune response, reducing the range of allowed viral mutation rates to a minimum. From this requirement one obtains constraints on B-cell mutation rates and receptor lengths, yielding an estimate of somatic hypermutation rates in the germinal center in accordance with observation.Comment: 4 pages RevTeX including 2 figure

    Locoregional Residual Esophageal Cancer after Neo-adjuvant Chemoradiotherapy and Surgery Regarding Anatomic Site and Radiation Target Fields A Histopathologic Evaluation Study:A Histopathologic Evaluation Study

    Get PDF
    OBJECTIVE: Neoadjuvant chemoradiotherapy followed by surgery establishes a considerable pathologic complete response (pCR) in EC. The aim was to determine site of residual tumor and its prognostic impact. SUMMARY BACKGROUND DATA: High rates of residual tumor in the adventitial region even inside the radiation fields will influence current decision-making. METHODS: We evaluated resection specimens with marked target fields from 151 consecutive EC patients treated with carboplatin/paclitaxel and 41.4Gy between 2009 and 2018. RESULTS: In radically resected (R0) specimens 19.8% (27/136) had a pCR (ypT0N0) and 14% nearly no response (tumor regression grade: tumor regression grade 4-5). Residual tumor commonly extended in or restricted to the adventitia (43.1%; 47/109), whereas 7.3% was in the mucosa (ypT1a), 16.5% in the submucosa (ypT1b) and 6.4% only in lymph nodes (ypT0N+). Macroscopic residues in R0-specimens of partial responders (tumor regression grade 2-3: N = 90) were found in- and outside the gross tumor volume (GTV) in 33.3% and 8.9%, and only microscopic in- and outside the clinical target volume in 58.9% and 1.1%, respectively. Residual nodal disease was observed proximally and distally to the clinical target volume in 2 and 5 patients, respectively. Disease Free Survival decreased significantly if macroscopic tumor was outside the GTV and in ypT2-4aN+. CONCLUSIONS: After neoadjuvant chemoradiotherapy, pCR and ypT1aN0 were seen in a limited number of R0 resected specimens (19.8% and 7.3%, respectively), whereas 6.4% had only nodal disease (yT0N+). Disease Free Survival decreased significantly if macroscopic residue was outside the GTV and in responders with only nodal disease. Therefore, we should be cautious in applying wait and see strategies

    Temporal variability of mineral dust in southern Tunisia : analysis of 2 years of PM10 concentration, aerosol optical depth, and meteorology monitoring

    Get PDF
    International audienceThe south of Tunisia is a region very prone to wind erosion. During the last decades, changes in soil management have led to an increase in wind erosion. In February 2013, a ground-based station dedicated to the monitoring of mineral dust (that can be seen in this region as a proxy of the erosion of soils by wind) was installed at the Institut des RĂ©gions Arides (IRA) of MĂ©denine (Tunisia) to document the temporal variability of mineral dust concentrations. This station allows continuous measurements of surface PM10 concentration (TEOMℱ), aerosol optical depth (CIMEL sunphotometer), and total atmospheric deposition of insoluble dust (CARAGA automatic sampler). The simultaneous monitoring of meteorological parameters (wind speed and direction, relative humidity, air temperature, atmospheric pressure, and precipitations) allows to analyse the factors controlling the variations of mineral dust concentration from the sub-daily to the annual scale. The results from the two first years of measurements of PM10 concentration are presented and discussed. In average on year 2014, PM10 concentration is 56 ”g/m3. However, mineral dust concentration highly varies throughout the year: very high PM10 concentrations (up to 1,000 ”g/m3 in daily mean) are frequently observed during wintertime and springtime, hardly ever in summer. These episodes of high PM10 concentration (when daily average PM10 concentration is higher than 240 ”g/m3) sometimes last several days. By combining local meteorological data, air-masses trajectories, sunphotometer measurements, and satellite imagery, the part of the high PM10 concentration due to local emissions and those linked to an advection of dusty air masses by medium and long range transport from the Sahara desert is quantified

    Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe

    Get PDF
    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein (MSW) resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early universe. We find incomplete destruction of lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the non-zero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses ~ 1 eV. This could result in better light element probes of (constraints on) these particles.Comment: 4 pages, 3 figures, matches version printed in PR
    • 

    corecore